Ở lớp 10, chúng ta đã được học về vecto trong mặt phẳng. Tuy nhiên, trong không gian, chúng ta sẽ gặp những vấn đề mới về vecto như sự đồng phẳng hay không đồng phẳng của ba vecto hoặc việc phân tích một vecto theo ba vecto không đồng phẳng. Những nội dung này sẽ được đề cập cụ thể trong bài học này. Dựa vào cấu trúc SGK, thuychien.vn sẽ tóm tắt kiến thức cần nhớ và hướng dẫn giải các bài tập một cách chi tiết, dễ hiểu. Mong rằng đây là tài liệu có ích với các em.

NỘI DUNG TRẮC NGHIỆM


*

A. TÓM TẮT KIẾN THỨC

1. Định nghĩa

Vectơ trong không gian là một đoạn thẳng có hướng.

Bạn đang xem: Vecto trong không gian lớp 11

Kí hiệu: \(\overrightarrow{AB}\) chỉ véctơ có điểm đầu \(A\), điểm cuối \(B\). Vectơ còn đc kí hiệu là \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\),...

2. Các quy tắc về vectơ. 

Quy tắc 3 điểm: \(\overrightarrow{AC}\) = \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\).

hoặc: \(\overrightarrow{AC}\) = \(\overrightarrow{BC}\) - \(\overrightarrow{AB}\).

Quy tắc hình bình hành: cho hình bình hành \(ABCD\): \(\overrightarrow{AC}\) = \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\).Quy tắc trung tuyến: \(AM\) là trung tuyến của tam giác \(ABC\) thì: \(\overrightarrow{AM}\) = \(\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC}).\)Quy tắc trọng tâm: \(G\) là trọng tâm tam giác \(ABC\) thì: \(\overrightarrow{GA}\) + \(\overrightarrow{GB}\) + \(\overrightarrow{GC}\) = \(\overrightarrow{0}\).Quy tắc hình hộp: cho hình hộp \(ABCD.A"B"C"D"\) thì: \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) + \(\overrightarrow{AA"}\) = \(\overrightarrow{AC"}\).

Xem thêm: Những Phím Tắt Gạch Ngang Chữ Trong Word Cực Dễ Bạn Nên Biết

3. Sự đồng phẳng của các vectơ, điều kiện để ba vectơ đồng phẳng.

Định nghĩa: ba vectơ gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.

Điều kiện để ba vectơ đồng phẳng:

Định lí 1: Cho ba vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\), trong đó vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\) không cùng phương. Điều kiện cần và đủ để ba vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\) đồng phẳng là có các số \(m, n\) sao cho \(\overrightarrow{c}\) = \(m\overrightarrow{a}\) + \(n\overrightarrow{b}\). Hơn nữa các số \(m, n\) là duy nhất.

Định lí 2: Nếu \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\), là ba vectơ không đồng phẳng thì với mỗi vectơ \(\overrightarrow{d}\) ta tìm được các số \(m, n, p\) sao cho \(\overrightarrow{d}\) = \(m\overrightarrow{a}\) + \(n\overrightarrow{b}\) + \(p\overrightarrow{c}\). Hơn nữa các số \(m, n, p\) là duy nhất.

Bài viết liên quan

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *